

Improving Scalability in Parallel File Systems for HEC

HEC FSIO 2 HECURA Research Program August 7, 2007

Walt Ligon
Clemson University

Project Objectives

- Develop an extensible parallel file system simulation tool
- Study
 - Server-to-server communication
 - Run-time configurable semantics/caching
- Address
 - Scalable metadata
 - Scalable small and unaligned access

Progress To Date

- Focus on development of HECIOS simulation
- Design goals
 - open source
 - object oriented
 - built on existing simulation platform
 - built with existing network infrastructure

Initial Research

- Identified possible tools
 - OpNet
 - NS
 - Omnet++
 - Simulcraft, Inc.
 - Omnest (commercial version)
 - Available since 1995

Omnet++

- Written in C++
- Flexible simulation model oriented around communicating modules
- INET powerful contributed network model
- FsSim file system/disk contributed model
- Easy to understand

Simulation Model

- Model consists of modules that respond to and send different kinds of messages
- Messages defined using a simple language (supported by a pre-processor)
- FSM abstraction eases programming of message handling routines
- Module configuration using ned language (supported by a compiler)
- Other objects easily programmed in C++

SPFS Architecture

SPFS Architecture

Client: Trace Processor

- Reads trace files
 - will have multiple subclasses for different formats
- Produces MPI-IO Request messages
 - roughly based on MPI, represents application level
- Handles most configuration issues

Client: Cache

- Inserts between trace and file system
- Produces and Responds to MPI-IO Requests and Responses
- Responds directly to read and write requests during cache hit
- Updates cache data during reads and writes
- One of our key research areas

Client: PFS

- Responds to MPI-IO Requests
 - Handles all client level file system functions
 - Distribution
 - Flow control
 - Modeled after PVFS request protocol
 - Translates MPI type requests into FS type requests

BMI / INET

- INET is existing TCP/IP model for Omnet++
 - well supported
 - quite accurate
 - easily replaced with other network models
 - someone needs to write those models though
- BMI is interface between modules and network
 - thin interface
 - eases transition to other net models

Server: Request Processor

- Contains bulk of server PFS simulation
 - Large collection of state machines
 - One for each type of request

Server: Request Scheduler

- Key component for handling semantics
 - Checks for available concurrency between requests
 - Initial model prevents concurrent access to file
 - Will study more advanced policies

Server: FsSim

- Existing file and disk subsystem model
- Based on HP disk model from 90's
- Various degrees of accuracy available
- Handles mapping offsets to blocks
- Handles file system cache and track buffer

Data Modeler

- Handles issue of pre-creating files
- Handles pre-locating blocks
- Use probabilistic model for fragmentation
- Pre-processor scans traces to identify files, file sizes, etc.
- Allows PFS parameters (stripe size, etc.) to be specified

Status

- Basic trace processor, cache, PFS implemented and integrated with BMI/INET
- Working request processor and scheduler integrated
- Working FsSim integrating blocklists
- Data modeler in development

Concerns

Traces

- still unclear what traces will be available or if we will have to produce our own
- some traces too specialized
- most traces not parallel
- UPDATE: HEC researchers promise traces soon!

Network models

- really need Myrinet, Infiniband, etc.
- UPDATE: Infiniband model close to release!

THE END

Scalable Metadata Server-to-Server Communication

Traditional Metadata Operation

Scalable Metadata Operation

Middleware Managed Cache Weakened Consistency

Program Areas Addressed

- scalable metadata operations
- scalable small and unaligned operations
- I/O middleware
- active caching
- server to server communication
- simulation of I/O, file, and storage systems

Research Focus

- Server-to-server communication
 - scalable metadata
- Run-time configurable semantics
 - Lockless SC semantics
 - POSIX versus weakened models
 - caching

PVFS2 Architecture Simulation Model

